Эль-Ниньо — изменение распределения температуры поверхности воды в Тихом океане, которое влияет на погоду и способно вызывать природные катаклизмы в отдельных регионах.
Команда специалистов из Высшей школы экономики и Школы анализа данных Яндекса совместно с облачной платформой Yandex Cloud разрабатывают нейросеть для предсказания климатического феномена Эль-Ниньо. Новый алгоритм помогает точнее прогнозировать изменение средней температуры океанических вод на поверхности, которое способно вызывать природные бедствия в отдельных регионах мира. Сейчас модель уже предсказывает Эль-Ниньо на 1,5 года вперед, а в будущем срок прогноза ученые планируют увеличить до 2 лет.
Нейросеть моделирует среднюю температуру в экваториальной зоне Тихого океана в перспективе. При Эль-Ниньо экваториальная часть становится теплее обычного. Также существует обратный процесс со снижением температуры в океане – Ла-Нинья. Такой сменный цикл происходит каждые 2–7 лет. Эти колебания оказывают значительное влияние на погоду во многих странах мира и могут повышать риск возникновения пожаров, засух, наводнений и неурожаев.
Научная группа университета обучила нейросети на массиве из тысяч температурных карт с синтетическими и реальными данными, собранными с 1800 года по настоящее время. Помимо стандартных методов машинного обучения для прогноза подобных явлений, ML-специалисты тестируют в обучении архитектуру Autoformer. Благодаря этому можно качественно обрабатывать последовательность температурных карт. Для предобработки датасетов ученые использовали сервис ML-разработки Yandex DataSphere, в котором есть все необходимые инструменты и динамически масштабируемые облачные ресурсы для полного цикла разработки машинного обучения.
Облачные технологии помогают эффективнее проводить эксперименты в научной среде. В таких проектах, как исследование Эль-Ниньо, важен быстрый и гибкий доступ к сервисам для тестирования разных моделей машинного обучения. Каждый такой тест с новой архитектурой помогает как можно раньше и точнее предсказывать феномен.
директор по национальным стратегическим проектам Yandex Cloud Анна Лемякина.
Проблемы глобального изменения климата становятся все актуальнее. Страшно даже не столько само потепление, сколько неизбежная «разбалансировка» климата на планете. Эффект Эль-Ниньо играет важнейшую роль в возникновении глобальных погодных и климатических флуктуаций, приводящих, например, к массовым неурожаям, и поэтому его прогнозирование особенно важно в текущих условиях усиливающейся климатической «разбалансировки.
профессор-исследователь департамента больших данных и информационного поиска факультета компьютерных наук НИУ ВШЭ, ведущий научный сотрудник AIRI Дмитрий Ветров.
Школа анализа данных Яндекса — бесплатная двухгодичная программа для тех, кто хочет стать топ-специалистом в области data science или архитектором систем хранения и обработки больших данных. Выпускники ШАДа работают в крупнейших IT-компаниях и занимаются научными исследованиями. С 2007 года мы выпустили 1,2 тыс. специалистов.