Решение Сбера ускорит разработку ML-моделей

На ПМЭФ-2023 компания Сбер представила новую программную библиотеку Py-Boost, которая значительно ускоряет процесс разработки моделей машинного обучения. Основой этой библиотеки является алгоритм SketchBoost, который использует новый подход к методам бустинга при обучении моделей искусственного интеллекта. Этот алгоритм применяется для решения B2B-задач в финансовой и страховой сферах. Об этом рассказал первый заместитель Председателя Правления Сбербанка Александр Ведяхин на ПМЭФ-2023.

Py-Boost позволяет значительно ускорить процесс разработки рекомендательных моделей финансовых продуктов для корпоративных клиентов. Этот подход заменяет десятки различных моделей и позволяет решить задачу наилучшим образом в кратчайшие сроки. Библиотека многократно повышает скорость обучения моделей при работе с сотнями классов и наименований рекомендуемых продуктов.

Совершенствование технологий на базе машинного обучения — это не только тренд, но и способ повысить качество контакта с клиентом, возможность подобрать именно тот продукт, который максимально отвечает его предпочтениям. Для этого мы представили алгоритм, который в разы ускоряет обучение моделей искусственного интеллекта и, как следствие, вывод на рынок разработок в области рекомендательных сервисов в сфере финансов и страхования. Это стратегически важное решение для сохранения лидирующих позиций на высококонкурентном рынке

Александр Ведяхин, первый заместитель Председателя Правления Сбербанка

Related posts

Игра-кликер от создателей Плюс Сити собрала 1 млн пользователей за неделю 

Рекламодатели Директа первыми на рынке смогут  оптимизировать показы медийной рекламы на рост брендовых метрик

ВТБ подключил оплату по универсальному QR-коду в магазинах, поддержав инициативу ЦБ и НСПК